Comparison of Two Probabilistic Methods for Finite Element Analysis of Total Knee Replacement
نویسندگان
چکیده
Probabilistic Finite Element (FE) models have recently been developed to assess the impact of experimental variability present in knee wear simulator on predicted Total Knee Replacement (TKR) mechanics by determining the performance envelope of joint kinematics and contact mechanics. The gold standard for this type of analysis is currently the Monte Carlo method, however, this requires a larger number of trials and is therefore computationally expensive. Alternatively, probabilistic methods exist, such as response surface methods that can offer considerable savings in computational cost. The aim of the current study was to compare the performance envelopes obtained for three metrics (Anterior-Posterior (AP) translation, Internal-External (IE) rotation and peak Contact Pressure (CP)) for a FE model of TKR mechanics using two different probabilistic methods: the Monte Carlo technique and the Response Surface Method (RSM), implemented with PamCrash FE solver and PamOpt optimization/probabilistic software. The influence of implant alignment was considered, based on a study from the literature. The results of a 1000 trial Monte Carlo analysis were compared to predictions from 25, 50 and 100 trial response surface calculations. Overall, the Response Surface Method (RSM) was capable of predicting similar results to the Monte Carlo method, but with a substantially reduced computational cost (RSM-50 4 hours as compared to 4 days with the Monte Carlo method).
منابع مشابه
ROTATING HINGE VERSUS CONSTRAINED CONDYLAR KNEE REPLACEMENT: WHICH ONE IS ACTUALLY MORE CONSTRAINED? A FINITE ELEMENT STUDY
This was Presented in 5th International Congress of Iranian Iranian Society of Knee Surgery, Arthroscopy, and Sports Traumatology (ISKAST), 14-17 Feb 2018- Kish, Iran
متن کاملComparison between Radial and Halbach Array PMLSM by Employing 2-D Electromagnetic Finite Element Analysis
The replacement of steam catapults with electromagnetic ones is becoming an overwhelming trend in aircraft launch systems. The Electromagnetic Aircraft Launch System (EMALS) offers significant benefits to the aircraft, ship, personnel, and operational capabilities. EMALS has such advantages as high thrust, good controllability, reusable, etc., as a launching motor, a double-side plate Permanent...
متن کاملThe Effects of Using Easy-Going Steel Knee Element on Seismic Behavior of CKBF
A proper composition of stiffness and ductility parameters is required to obtain a resistant and economic structure. Accordingly, Chevron Knee Braced Frame (CKBF) seems appropriate due to its proper seismic performance. The advantage of this system comes to having the capability of rapid and cheap replacement of chevron knee elements after an earthquake occurs. In this research, response modifi...
متن کاملHigh-Performance and Distributed Computing in a Probabilistic Finite Element Comparison Study of the Human Lower Leg Model with Total Knee Replacement
Reliability theory is used to assess the sensitivity of a passive flexion and active flexion of the human lower leg Finite Element (FE) models with Total Knee Replacement (TKR) to the variability in the input parameters of the respective FE models. The sensitivity of the active flexion simulating the stair ascent of the human lower leg FE model with TKR was presented before in [1,2] whereas now...
متن کاملA Comparison Between Electrical Circuit and Finite Element Modeling Methods for Performance Analysis of a Three-Phase Induction Motor under Voltage Unbalance
Induction motor is the most popular load in the industry, it is very important to study about the effects of voltage quality on induction motor performance. One of the most important voltage quality problems in power system is voltage unbalance. This paper evaluates and compares two methods including finite element method (FEM) and equivalent electrical circuit simulation for investigation ...
متن کامل